Data Reliability Techniques for Specialized
Storage Environments

Technical Report UCSC-SSRC-09-02
March 17, 2009

Rosie Wacha
rwacha@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064

http://ww. ssrc. ucsc. edu/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

DATA RELIABILITY TECHNIQUESFOR SPECIALIZED STORAGE
ENVIRONMENTS

A project submitted in partial satisfaction of the
requirements for the degree of

MASTERS OF SCIENCE
in
COMPUTER SCIENCE
by
Rosie Wacha

December 2008

The project of Rosie Wacha
is approved:

Professor Darrell D. E. Long, Chair

Professor Ethan L. Miller

Acknowledgments

| would like to thank the following people for their help and support: Darrelhg,
Ethan Miller, Thomas Schwarz, Scott Brandt, Gary Grider, James Nuoén Bent, Ralph
Becker-Szendy, Neerja Bhatnagar, Kevin Greenan, Bo Hong, BerAisa Neeman, Esteban
Molina-Estolano, Valerie Aurora, Julya Wacha, Diane Wacha, and Nceths/

| also want to thank the following organizations for funding my research: R¢€
gents, Graduate Assistance in Areas of National Need (GAANN), Los Aldmatisnal Labo-
ratory (LANL), and the Institute for Scalable Scientific Data ManagemeI8[)I9).

Contents

Acknowledgments
List of Figures
List of Tables
Abstract

1 [Introduction

2 Synthetic Parallel Applications

2.1 Introduction
2.2 RelatedWork
2.3 HowtoCreatethe SPA,
2.3.1 Capture Logs of /O EventsatEachNode
2.3.2 CreatetheEventQueue
233 Barriers e
2.3.4 Writingthe ParallelCode
235 Limitations
24 Results. e
241 OverheadofStrace
2.5 Future Work: Analyzing Traces with Hidden Markov Models
2.5.1 Background: Hidden Markov Models
2.5.2 Using Hidden MarkovModels
2.5.3 Predicting Performance.
2.5.4 Determining Bottlenecks
255 ParallelAccesses oL
256 TraceFormat
26 Conclusion

3 Réliability in Sensor Networks

3.1 Introduction
3.2 lIssuesinReliability L
3.2.1 Redundancy Techniques

Vi

Vil

3.2.2 Node Choice 17

3.2.3 Frequency of Integrity Checks 20
3.3 Optimizations e e e 21
3.4 RelatedWork 21
3.5 Conclusion e 22
Parallel Redundant Array of Independent Streams (PRAIYS) 23
4.1 Introduction 23
42 RelatedWork 23
4.2.1 Row-DiagonalParity (RDP) 25
4.3 PRAIS Implementation 26
4.4 Evaluation e e 26
45 Conclusion e 27
Bibliography 29

List of Figures

21

2.2

2.3

3.1
3.2
3.3

3.4

4.1

4.2

4.3
4.4

4.5
4.6
4.7

Event queue events are transferred into the SPA by placing conditaoalsd
theblock. 7
BTIO results; the BTIO application contains a compute and write phase fol-
lowed by a read and verificationphase. 8
MPI1IO results; the benchmark is configured to perform a series itdsnfiol-

lowed by a 18sleep and anotherwritephase. 9

XOR; redundancy method for a 5-node sensor network. 8 1
XOR, redundancy method for a 5-node sensor network. 8 1
Markov model, wherd andu are the average failure and repair rates, respec-
tively, of exponential distributions. 19
Data availability oM r r or 4, XOR;, XORy, and no redundancy. 20

RAID 1 mirrored data layout requires high 2x storage space but iggaabiper-
formance. Any single failure is tolerated, as well as some multiple failures such
asdisksAandCinthisexample. 24
RAID 4 and RAID 5 data and parity layouts have a lower storage oadrtten

RAID 1, but only tolerate a single failure. The parity distribution of RAID 5
eliminates the parity disk bottleneck. 25
The Row-Diagonal Parity layout tolerates any two failures. 25
Example RDP layout with integers for data. For a single failure, recorhstruc
using either row or diagonal parity. After a double failure, first recoms$tau
diagonal that only lost one element. Then, reconstruct that row, aedtréps

process for all data and parity elements. 26
PRAIS architecture. e 27
Performance of initial write of 500MB ofdata. 8 2
Performance of reconstruction of 500MBofdata. 28

List of Tables

3.1 Energy expenditure of erasure codes in mJ/s and throughput in MB/s. ... 17
3.2 MTTDL, in hours, forM r r or 4, XOR;, andXOR, schemes with and without
1T 0= 1 20

Vi

Abstract

Data Reliability Techniques for Specialized Storage Emnents

by
Rosie Wacha

Data reliability has been extensively studied and techniques such as RAIEasure
coding are commonly used in storage systems. Real workload data is als¢eintjor storage
systems research. We developed a tool to streamline the process oingeleaskload data
by automatically removing all non-1/O activity from software. The tool creaeSynthetic
Parallel Application (SPA) that has the same I/O behavior as the originatgmoghen it is
run. Next, we address reliability in the context of two specific storage @mvients, namely
sensor networks and tape archives.

Sensor networks are made up of individual nodes that are highly egrestrin power.
Due to reduced storage costs, nodes are increasingly storagedras#chnsmitting data to
a base station is reduced in order to conserve power and camouflage theknathostile
environments. We investigated the tradeoff between power and reliabilitstdoage-based
sensor networks using Reed-Solomon, XOR-based codes, and mirrdrgults show that
our Reed-Solomon implementation provides higher reliability with more flexibility but with a
higher energy cost. Also, théOR; reliability scheme we designed provides reliability close to
that of 4-way mirroring at half the storage space overhead.

Commercial tape drives have high reliability ratings. However, many individua
drives make up an entire archive. In order to achieve good write qpeaioce, data is often
written in a striped pattern so that several tape drives are used to storgla fde. Thus
reliability is a significant concern and additional reliability techniques are oféed. We inves-
tigated the performance overhead of row-diagonal parity (RDP) in theexbof a large tape
archive. Results show that our parallel implementation scales well for srmabens of nodes,
with twice the initial write bandwidth of data when the stripe size (and number ofs)ad
doubled. Future work will compare the performance of RDP with Reed-Sol@ndrevaluate
scalability with higher numbers of nodes.

Reliability can be achieved in many ways. The SPA project can help improragsto
reliability by allowing software that normally could only be tested in a single envient to
be run on different hardware setups. Sensor nodes often havéméed power available due
to the locations where they are often deployed. The reliability of data measarme@ne node
is not always essential, particularly if another nearby node measursditedata. The choice
of reliability technique for a sensor network must be made in the contex of tuestraints.
The data stored in tape archives is often never read, but if it is needegitbe there. We can
sacrafice some extra hardware as long as performance is not sighjifloarered. This project
investigates these three areas of reliability.

Chapter 1

| ntroduction

One of the central requirements for most file systems research is goothashdata.
Most of the time this data is contained in a log of I/O requests, known as a tGadkecting
and releasing traces is not glamorous — file systems researchers typidglijoothis out of
necessity. No one really wants to collect traces because itis a time consumtegpand there
are privacy concerns that must be addressed before the data caledsed.

The first part of this project is a tool that simplifies the process of collectacet
of real parallel applications and releasing them to the public. The basic topé tool is a
parallel application that can be run on a cluster. The tool runs the applieattboollects traces
at each node. Then these traces are automatically analyzed to detectahH@or and a new
program, called a Synthetic Parallel Application (SPA), is written that will perfthe same
I/0O activities at the same times. All non-1/O behaviors in the trace are ignordet present
in the SPA. Our results show that I/O traces collected from running the &i2&lg match the
original traces.

The second part of this project is an investigation of reliability for two stoeye-
ronments: sensor networks and tape archives. Good data reliabilityecachieved by sim-
ply mirroring data on several disks. More copies of data provide more il@yalHowever,
the hardware cost quickly grows unmanageable. Particularly in envirdsmérere traditional
disks are not used or are only part of the storage system, more sophistElability strategies
are helpful.

Sensor nodes that store their data locally are increasingly being deptohedtile
and remote environments such as active volcanos and battlefields. Qiosergathered in
these environments are often irreplaceable, and must be protected frodu®s$o node fail-
ures. Nodes may fail individually due to power depletion or hardware/soft\wroblems, or
they may suffer correlated failures from localized destructive events asidire or rock fall.
While many file systems can guard against these events, they do not carsédgy usage in
their approach to redundancy. We examine tradeoffs between enmdgnelability in three
contexts: choice of redundancy technique, choice of redundardssnand frequency of ver-
ifying correctness of remotely-stored data. By matching the choice of reliatatityniques to
the failure characteristics of sensor networks in hostile and inaccessilteranents, we can
build systems that use less energy while providing higher system reliability.

Tape drives were invented by IBM in the 1950s [11]. Tape archivesstll used
for data that is written once and then rarely read or updated. Fast writarpance can be
achieved by writing data in a striped pattern. A very large file is broken up everal chunks
and each chunk is written to a separate tape device. For example, a 128@®fitebe bro-
ken up into 128 chunks where each is written to a tape. The time to write that filkel\we
the time to write 1GB. Striping like this is actually done on a much larger scale. Tiéepmno
is that reliability for that large file is degraded significantly when only stripiligany one of
those 128 tape drives is damaged, that file cannot be reconstructedilRgliathe context of
such high performance requirements is quite challenging. For examplegssuppl GB tape
cartridge is expected to last 30 years [2], which is a mean time between faillitds above
10° hours. If the entire archive contains 4000 cartridges, we expect ta &glire every day.
In high performance computing the stripe width can be very large, meaning tivajla &le
may be broken into thousands of pieces and each piece is stored orvaresda single parity
provides some protection, but with thousands of devices it is not sufficlatimplemented
a software RAID that performs mirroring, RAID 4, and Row-DiagondaiitygRDP). We mea-
sured the performance of RDP to determine how much processing time is cetpugempute
two parities.

In summary, we investigated reliability from several points of view in some spey
cific contexts. The first is that of the I/O workload and how it can affeetdtoice of reliability
method for a storage system. The SPA provides a method for running theb&@tsof pro-
prietary or private code on untrusted hardware. This allows more applisatiobe used as
benchmarks for new algorithms and can help improve data reliability. Senswonks typi-
cally have very specific constraints. Some of these are limited power, tlzedware that is
more likely to fail, and deployment in hostile environments, each of which furtloeease the
likelihood of node failure. The choice of reliability technique must address tb@sstraints
and provide reasonable reliability in creative ways. For example, storingrarmopy of data
from one node to another far away in the network can protect the data thettestoring that
copy at a nearby neighbor. Lastly, tape archives have unuswsdspatterns and requirements.
Individual hardware components are relatively reliable. In larger Bysteomponents are of-
ten utilized in parallel to improve performance but resulting in a much lower oveyatem
reliability. A large file can be quickly written to tape, but then that file requitethase tape
drives to be functional in order to reconstruct that one file. The perfocmanpact of adding
erasure coding techniques is important and must be addressed to easyertbrmance isn't
degraded to near what it was without striping.

Chapter 2

Synthetic Parallel Applications

2.1 Introduction

Workload data is useful for file systems researchers, particularlyifarlations of
new algorithms and designs. This data is available in a variety of forms, suchcas tand
benchmarks. Traces can be logs of the behavior of the entire file syst@srsmall as a single
application. Traces can be quite large, especially if the application is veryrlowgng or
performs many actions. For this reason, it is difficult to create traces rjgfda changing
workloads and applications. Also, both because of their large sizes apdvate information
contained, they are difficult to share with researchers outside a particgknization.

Benchmarks are used to evaluate a system under a specific load. Weniente,
benchmarks are often used many times to evaluate many different systemthgirecis a large
cost in designing new appropriate benchmarks. Benchmarks are ofignele as synthetic
programs which don’t perform a necessarily useful programmatidifumbut stress the system
in a specific way to determine certain characteristics of the system, suchlak@dandwidth.
While this type of benchmark is useful for comparing systems under speegigrements,
they don'’t capture system metrics under “typical” conditions of user agjaitmon a system.
The ideal situation would be if we could release real user applications asrharichthat then
could be used to compare systems, which is conceptually the goal of thafirsf this project.
We created a tool that creates an I/O skeleton program, called a SynthetielPspplication,
from a real scientific program. This work was completed while working atAlamos National
Laboratory.

The second long-term future goal of this project is to create accuratbetic I/O
workload models of real workloads. We plan to extract the essential giegpef the real I/O
workload into a hidden Markov model. The model will contain access pattermmiaton
and time durations representing the time required to access file segments. Todagpdsv
of data will be modified to create new synthetic workloads that representtivprogram
would behave on different systems. The models could be modified and edtémdarger
clusters, allowing even greater flexibility and accuracy than is possiblg theérbasic synthetic
applications. This part of the project is proposed work that hasn’t beepleted.

2.2 Related Work

Workload studies are published regularly as previous workloads beocotdated
and I/O patterns change [6, 43, 30]. Typically, a sanitized version df#oe data is released
with these publications so that researchers, as well as storage systelopdes, can simulate
new I/O system algorithms with realistic access patterns. These types of hagsia papers
are published infrequently because the amount of work involved in gathadcurate traces,
finding useful information, and removing private data is so high. Perhapsdrwould be
published more often if the process of obtaining and sanitizing them was monéessa

There are several projects that focus on more accurate accuratedhiactian and
replay. Buttress [4] deals with timing accuracy for I/O benchmarking anidye@pecifically,
the tracing tool preserves extreme burstiness of asynchronous 1/0O. dtksilows us to create
models from I/O traces that we can expect to be accurate. Aranya dtiaip]|dmented Tracefs,
an actual file system that captures traces at the VFS level. Auto-pilot [49fr&anework for
producing accurate, reliable, and informative benchmarking results.

Other work uses /O tracing and analysis to detect, isolate, and cormdtepr. Pin-
point [12] uses statistics to correlate components with failed requests to pinpeicause of
faults. Magpie [7] is a tool for analyzing workload behavior that detee¢sies and correlates
them by application. Magpie is implemented as a tool that runs online using a laiveaxdk
event tracker, a request parser which extracts requests fronl agtrdg logs, and an event
schema which groups related event types. Triage [27] uses a conantexdapts to system
and workload changes. Proteus [26] does automatic detection of wosklwatccontend for cer-
tain resources and uses control theory to schedule requests. [RB8Edgroves I/O efficiency
by throttling 1/0Os to avoid storage device saturation. Black box [3] models systemponents
as black boxes. The algorithm can identify an individual node which caageerformance
delay without modifying applications.

Several research projects have looked at the process of gettingrpanice infor-
mation from parallel /0 subsystems. Madhyastha [34] developed an |/@fatation system
using Hidden Markov Models (HMMs). The motivation for the project was tesifg I/O ac-
cess patterns online in order to make system decisions to improve perforrdancelividual
HMM is created and trained for each program. There is significant ogadrimeintroducing a
new program but low overhead to run the program multiple times. Howeveruthera do not
present overhead results in this paper. Event duration times are igndheddaper in an effort
to remain platform independent, but this area is listed as future work andtisfthe moti-
vation for our research. Mesnier et al. [36] attacked the problem ofrggnization of nodes
across a large cluster. This project automatically determines data dep&rsieetween nodes
in /O traces. Their solution uses a technique called 1/O throttling where a siadeis slowed
down during replay in order to see which other nodes stop making psgreswait on that
one node. This work does not address other parallel I/O issues sadtarate node clocks or
barrier detection. Hong [24] studied two characteristics of 1/0O workloadist&o techniques
for creating synthetic traces. He verified that disk traffic is self-similar aatigimoring some
long-range dependence does not significantly affect disk ben&atfrsimilarity in disk traces
motivates the use of Markov models for /0O modeling. See Section 2.5 for more details.

Our work is on the extreme end of simplifying the process of gathering deasiag
traces on clusters. We analyze source code with the goal of removirenaltige information
that is unrelated to the I/O behavior of the application. The tool is tied to a singdggmming
language for output code, but could be extended to a more generahsyEhe input can be
any language, since the true input to the tool is a system call trace.

2.3 Howto Createthe SPA

The purpose of a Synthetic Parallel Application (SPA) is to mimic the I/Ogifhgle
run of a real application. Note that this is a limitation particularly for nondeterministic pro-
grams, but was chosen for simplicity and to reduce the performanceeacdf creating the
SPA. It may possible to extend this work to perform several runs aratectbe SPA by av-
eraging the timing and 1/O data into a single SPA, but this still provides only a singléor
performance analysis.

The SPA can be run as a way to measure the 1/0 requirements of user appdica
and our goal is to improve accuracy with respect to timing and data acceasfs fidee Synthetic
Parallel Application is created from system call logs of the original applicatibhe Unix
applicationstraceis used to capture the 1/O system calls made at each node that the original
application runs on. The process of creating a SPA involves a few stepasilha¢ discussed
in detail in the next sections. First, we capture logs of the 1/0O events the drappécation
performed at each node. These logs are analyzed to create a gloloturstrof the program
that does not depend on individual node usage. Lastly, that strustaosverted into a real,
runnable, parallel program, which we call the SPA.

231 CapturelLogsof I/O Eventsat Each Node

The logs are generated by the Unix tatdace Strace captures and displays system
calls that are made by an application. Each call log that strace creates isfadigtiests made
to the kernel. Strace creates a log at each node the parallel applicationiisgon. The data
in the logs needs to be generalized to get a full representation of the emttielgarogram.

The first step in creating the SPA is to create a description of the events ofrttiiepa
application we are modeling. We run the application under strace, carefullyirmnshat all
I/O events generated by the application at each node are captured intole.l¥geficapture and
reproduce the following I/O events:

e Open
e close
e read

e Write

2.3.2 Createthe Event Queue

The event queue is an internal representation of all events read fromatiee Each
I/O event in the event queue contains the following fields:

e Node ID

Timestamp at start of each event, microsecond accuracy

Timestamp at end of each event, microsecond accuracy

Name of event

Options of event (e.g. file name, file handle, size of 1/0)

The system call logs that strace creates contain a low-level represanvétitO
events containing local data that we need to generalize to create a fidsespation of the
entire parallel program. For example, thpen system call uses the file name of the file to be
opened, but subsequandad, write, andcl ose system calls are specified by an integral
file handle. These file handles are unique at each node as long as teefilims open. There-
fore, we must track file handles in order to know which 1/O events correspmwhich files. In
order to track file handles within an strace log, we maintain the set of currgelyfile handles
matched with their file names.

Before an I/O event is added to the event queue, we verify that theéisseguentially
valid. Sequential validity means that events occur in a realistic sequence. Foplexa file
handle cannot be written to before the file is opened. We ignore any ewemtsccur without
the required setup. These types of events are rare and only showthsp lzginning of our
traces. We believe they are MPI-specific files that are opened beface starts tracing.

2.3.3 Barriers

A barrier in a parallel program forces every node to wait to continueingnantil
all nodes have reached the barrier. This effectively synchronizesoites so that any actions
will begin at roughly the same time. We determined that placing a barrier at thefstiae SPA
improved the results of the SPA, but we will need to look into detecting additionaebsin the
original application. This is particularly important for longer running applicatiowe could
use a heuristic to improve barrier detection in combination with monitoring network traffic.
When MPI has a barrier, the nodes need to synchronize and the notifit@tial nodes to start
running again should be detectable. By strategically placing barriers iSAywe can better
match the timing of the events in the original application.

2.34 Writing the Parallel Code

Creating code from the event queue is a straightforward processdescfihe careful
way the event queue is constructed. Specifically, all error handling is blefore creating the
event queue, and each event is valid sequentially (e.g. no read @dthoat a prior open to the

6

Synthetic

Parallel
Applicati
Event Queue \pplication
Node Event if (node 0)
0 open fl | ———» open fl
1 open 2 if (node 1)
open {2

Figure 2.1: Event queue events are transferred into the SPA by pladidgiooals around the
block.

file). Each event is simply transcribed into the parallel code, with a condittoredecify the
node that performs that event, as shown in Figure 2.1. The eventsdaredithe same way as
they were in the original application. It would be possible to reorder evertgeirvent queue
before processing into code, but that is not the goal of this particubgeqir Our goal was to
closely mimic the behavior of the scientific application.

2.3.5 Limitations

The SPA generator described has several limitations. Because we onlg sagge
run without analyzing source code in any way, we ignore all nondeterminmexample
of this is parallel make which parallelizes source code building by breakingpogponents
that don’t depend on each other and executing the builds in parallel. Thecomdpiled on
each node can vary dramatically from one run to the next, dependingwrghickly each
component completes and whether or not any nodes are overloaded a@mewould address
this limitation is to perform multiple runs of the program. The first step would be to perfo
some basic statistical analysis to verify that certain parallel programs axhitit this type of
nondeterminism. In the case of a truly nondeterministic program, the best satdipinvolve
looking at source code.

Asynchronous 1/O is another issue that we did not investigate. Asynohbsol/O
means that the application does not wait for the I/O to complete so that it can immediately
continue running other work. Processing is likely to interleave more fully with E€alise the
process doesn’t have to wait for 1/0Os to complete before executing moredtictrsl

Another type of I/O that is not included in the SPA is prefetching. This tydé®fs
executed automatically by the file system based on previous access pattegpected future
access. The goal is to preload files from the disk that an application migthiméwge future in
order to make 1/0s more sequential and reduce waiting time in the future. Our BRAclude

Cumulative User 1/O for BTIO Benchmark

Total I/O (MB)
SN
o
o
x

100 | BTIO o _|
SPA o
0 | | | | | | |

0 20 40 60 80 100 120 140 160
Time (s)

Figure 2.2: BTIO results; the BTIO application contains a compute and writeegbdswed
by a read and verification phase.

all I/0 that was requested by the application, and thus a future run maydiiféeto lower level
I/0 policies. Caching is another aspect of file system behavior that we f@vinvestigated.
Because we trace at the application level, we ignore any lower level disktiastisuch as
prefetching and caching. We do not detect whether a read is serwidbd disk on-demand or
earlier. The best way to create an accurate SPA in this case would be foéfeiching off as
much as possible when creating traces of the original application. This will helpke tha
timing of I/O events more system independent. The SPA can then be used amfesgstem
to evaluate different prefetching methods.

2.4 Resaults

To evaluate the validity of the SPA, we compare the workloads of two origindi-app
cations and SPAs generated based on those applications. All programs araler strace and
the resulting strace output files are analyzed to create SPAs as desctibegiavious section.

We ran the tests on a 164 node Linux cluster at Los Alamos National Labar@toey
first benchmark is the BTIO benchmark [48] from the NAS Parallel Beratks version 3.2.1.
The results of this test are in Figure 2.2. We found that for this benchrttakSPA is able
to match the original application fairly closely. The overall behavior of the 8&ches, with
a higher slope at 95 seconds where the benchmark switches from calcalatingriting out
results to reading them back for verification.

The second benchmark is the MPI-10O Test benchmark, developedidk LFhe re-

Cumulative User 1/0O for MPIIO Benchmark
600 x x x x x x m

500 |- o

400 |- -

300

[
@
b N
|

Total I/O (MB)

200 - -

100 - MPIIO o
SPA o

Time (S)

Figure 2.3: MPIIO results; the benchmark is configured to performiassef writes followed
by a 1G sleep and another write phase.

sults of this test are in Figure 2.3. Because this benchmark ran for apgratl of time, the
results show more clearly the differences between the original applicatichei®PA. It is not
realistic to expect the I/O timing to match exactly for these two application runs. &kien

running one application twice in a row, the timing will differ slightly due to resoursage
and contention. The important difference that we need to address is tfaPghactually per-
forms 1/O at a different rate than the original application. The slope of tiggnat application is
steeper, meaning that 1/0Os are performed more quickly. This is also slightly viisibigure 2.2
where the far right tail of the graph for the SPA extends past the ori§inlD application. We
may analyze this behavior as future work.

2.4.1 Overhead of Strace

Another area of future work is to determine the overhead of strace foe s the
available benchmarks. There is an strace option where you can estimateanvand ideally
improve the traces by accounting for the overhead in the traces. It woulddjel to try that
technique and see if it results in a lower measured overhead for the applicd@ti@nstrace
option is supposed to amortize the overhead across the entire run of thamrar that the
timestamp of each event is slightly earlier, and the strace more accuratelyerggrasun of
the application without strace.

2.5 FutureWork: Analyzing Traceswith Hidden Markov Models

We have started looking at extending our work to model application 1/0 behavior
using hidden Markov models (HMMs). The main motivation is that a better repedsmanof
I/0 will allow more flexibility in replaying that 1/0 on future systems. Once we haveaalel
that we believe to be accurate, we will be able to modify it in order to create rakioads
based on existing data instead of only matching available workloads.

251 Background: Hidden Markov Models

A Markov chain is a finite state machine with probabilities associated with the tran-
sitions between states. This means that we have a graph of states or atitfiguand the
probability of moving from one state to another is known. T@kov assumptiofs that the
probability of each state and output at that state depends only on theysst@e, meaning that
there is no long term history of influence. Hong [24] showed this to be anadde assumption
for I/O workload access patterns.

A Markov chain is a model of an event stream where the states visited in the model
are uniquely determined by the output sequence of events. In otheswhbgte is only one
possible Markov chain that can be created from a specific event sti@egating this type of
model from data is straightforward. The state structure must be choseth ahéae; this is
the non-automated part of creating the model. Measuring the probabilities is aetbimahe
following way. Consider the transition from staté¢o statej. Calculate the total number of
times this transition is taken and divide that by the total number of times transitions are tak
from i to any state (including). This gives the probability that stajefollows statei. Repeat
this process for all transitions in the model.

Hidden Markov models [41] are a generalization of Markov chains where multiple
states representing the same output symbol are allowed. This allows thetptbpean HMM
state sequence cannot be uniquely determined based on an outputceequnel thus the state
sequence ikidden The main challenge in using HMMs is building the set of states that best
represent the output data sequence to be modeled. Several propeHigd/s make them
particularly well suited to the problem of performance prediction.

e Multiple states representing the same visible output. This allows more than one expecte
value for the average access time for a particular file segment. For exanediiesttime
a file segment is accessed, it is likely to take a longer time to fetch it from disktiean
second time if it is being accessed from memory. Other possible reasomsyorgtimes
are RAID policy changes or file migration onto a different physical handedr

e The Markov assumption greatly simplifies the model by not remembering history. This
may be a limitation on the prediction capability, but simplicity is preferred when possible

25.2 Using Hidden Markov Models

This work addresses the area of benchmarking storage systems. ifeegsted in
improving the ability to make performance predictions based on available I/Aoaarknowl-

10

edge. The basic idea is that by creating a representative model of a whnki@aan extrapolate
how that workload would look on other systems.

Consider a scientific application that was built to run on 32 nodes. Supposeev
interested in the I/0O behavior that application would perform if it could instea@n 64 nodes.
Our goal is to create an accurate model of the scientific application from miitr@n 32 nodes.
With that model, we will extrapolate how the I/O would look if we could run on 64asod hese
synthetic workloads should be accurate representations of how the bggieatific applica-
tion would behave if it could fully utilize the additional hardware available in the setup.
Then we can simulate the performance of the synthetic workload undeusdr® systems
algorithm changes, such as caching or prefetching. Note that this solutiGsreekeral strong
assumptions. The first is that 1/O is the bottleneck of the application and changimgith-
ber of computation nodes will directly impact the size and number of 1/0 requestsalsty/
assume good scaling of the application, meaning that the problem being soived sabdi-
vided in arbitrary ways and has fine granularity. This may not be valid foryragplications,
but still provides a useful way to predict I/O behavior even when a simitagrram would not
realistically solve the same problem.

We will create synthetic workloads based on hidden Markov models (HMN@aif
workloads. The models specify read and write events and the duration ofd@hiests. The
optimal model will classify an 1/0O workload in such a way that it can be used ¢arately
recreate the same load on the storage system. The model can also be modifig@gente
similar workloads of interest, such as increasing the amount of load each tonuule places
on the storage subsystem.

Hidden Markov models are Markov models with hidden states, meaning that some
states do not correspond to actual events in the data. These hidderalitatethe model to
capture system behavior that we don’t measure directly because weltserve those events
or they are difficult to observe. We leverage previous researchwBih used HMMs to char-
acterize workloads using traces. This work created an HMM for eachdiessed, where each
state corresponded to a segment of that file. This is implemented as a two dinamrsiay
where each file segment has a probability of accessing every otherditeesé In practice,
many of those probabilities are 0. If a file is only accessed sequentiallythibaimly nonzero
probability is to the next block. In order to reduce memory usage, they kdasoany states
where multiple segments are only accessed sequentially into a single state withr adgrgent
size.

Our work will add features to improve the workload accuracy of the moded. first
addition is a measure of time, in order to capture event durations. Using trergedevations,
we also plan to determine a way to predict the behavior of a particular warkloa different
system setup.

The HMM will have a few different types of states. The first layer will begteas corre-
sponding to file segments. These segments represent the granularity veithA@hrequests are
made. We also plan to aduhit states to incorporate event durations into our HMM. Event du-
rations can be incorporated into the HMM as separate states. Each file ségtattwill have
a probability distribution for which segment will be next accessed as wediradbé duration of
the current state. Since I/O durations are not completely deterministic, we will imptehe

11

duration as having an average and standard deviation measured from multgotd the same
workload. We will use confidence intervals to get the percentages ¢brvedue in a range of
possibilities around the average value. The additional runs will introducéisent overhead
in creating the model, but this step is necessary to add sufficient certaintytaboexpected
durations on a certain system.

We need multiple states for each observable output because there are multiple ways
to access afile. If a file is accessed sequentially, the state sequencelshdifférent than if
it is accessed randomly. This will be possible by having additional hiddenssgteences that
represent different types of access patterns.

With the time of events measured, we hope to determine how to predict how the
workload will change on a new system. For example, if our trace was takenGhnode
cluster, we want to predict how different the workload will be when rorad 28 node cluster.
This assumes that the original program will scale with the addition of more nélesould
incorporate nonlinear scaling, so that tripling the number of computation nodes wdyld on
produce double the amount of I/O work, for example. In the simplest caseyilwassume
linear scaling of I/O requests in size and frequency.

Here is our basic algorithm for creating an HMM of a workload:

Repeat the following until delay values tend to converge:
Run programto get an I/ O trace
For each 1/O event in I/O trace:
If (this access and previous access) i s unique
Create a new state
Initialize average delay (to delay for this access)
Initialize nunber of accesses (to 1)
Else (i.e. this access and previous was seen before)
Put delay into average, increnent nunmber of accesses

This algorithm was designed in order to improve memory efficiency by not storing
transitions between states that are never taken in practice. Becaus&@vevgnt is added to
the HMM along with its transition, all transitions that have probability greater tham wél
necessarily be present in the model.

2.5.3 Predicting Performance

The goal of this section is to determine viability of a new system setup befougracq
ing and configuring the actual hardware based on workloads knowsitogortant. The idea is
to have a detailed description of the system in various dimensions, such asrrafrobenpute
nodes and hard drives, and run the real workload on some of thesesians. By keeping
most dimensions fixed and varying a single dimension at a time, we can measimgp#ut
of that dimension on workload performance. Maybe there is a machinagrigaethnique that
would apply here.

12

2.5.4 Determining Bottlenecks

One goal of workload analysis is to determine which computer subsystem istthe b
tleneck of a given application. The bottleneck of any system is clearly antha¢ should be
focused on when adding new resources.

Consider the following experiment. Run an application with 1 node, 2 nodesiebn
and 8 nodes. Plot the I/O performance such as throughput in MB/s, rethoughput, and
CPU time. The data plotted should be the left edge of a logarithmic curve. Tleztexp
bottleneck is the curve for which the slope changes the fastest or wieestotie is the smallest
first.

255 Parallel Accesses

Do we want to have separate HMMs for each node and then combine thentz©r d
it make more sense to have it combined with the ability to reconstruct individuellveitavior?
This depends on whether we are most interested in individual requests aghirements of
the program as a whole. | tend to think that combining into a single model makes meges se
so that is what | have chosen for now.

There are some issues that we will address with respect to the paratiehpnming
model. We will create a single model for the entire program, thus combining parakeicthr
behaviors into a single control model. Our model will keep track of whetheobrmultiple
nodes access the same segment of a file. This will be done by keeping\aduabl/O access
count for each CPU node.

256 TraceFormat

The obvious approach is to continue analyzing strace 1/O traces. One eleHiths
the ease in which straces are produced on any Linux-based operattagisyOne drawback is
that there is overhead associated with running an application under stmacther drawback
is that there is a limited amount of information available at the system call level. Sgsién
provide the interface between user-space and kernel-space, tharg wacing right between
the application and hardware.

It may be desirable to capture traces at a lower level than strace allowgdantorget
more detailed information about what the hardware is actually doing whengsiogerequests.
In particular, knowledge about whether a particular file segment is stom@émory would be
useful in predicting the effect of increasing total memory. This might be plessildetermine
by tracing the calls to mmap (an optional field for strace), but | have nottige#sd this ap-
proach in detail. It might be necessary to trace at other levels in ordeetliicoperformance
changes with respect to certain hardware.

At a higher level, we also miss some information that would be very useful in mirro
ing behavior. Specifically, we do not have access to any application lodialgorithms. This
is desirable in the context of producing code that doesn’t contain iptapy information. On
the other hand, it makes it much harder to deduce and replay certain applicetiawvidrs such
as barriers.

13

2.6 Conclusion

We implemented a tool that creates synthetic parallel applications from rdaaapp
tions. The SPAis created from I/O traces of the original application, thusmglthe likelihood
of inadvertently putting any code directly from the original application into thehstic one.
The tool was shown to work on several benchmarks by creating codmitmts the I/O from
those benchmarks accurately to the granularity of less than one second.

We have considered many areas for future work. One topic is to look atlimgde
application 1/0 behavior using hidden Markov models. An application model coufdlibe
systematically modified in order to produce more general behavior. For examgleyrtiber of
files accessed by the program could be doubled. Even more ambitious chanlgeseemade,
such as modifying the model to require twice as many nodes. This requireis easgamptions
about scalability of the underlying algorithm, but can be quite useful in testitugefuluster
and storage requirements.

14

Chapter 3

Reliability in Sensor Networks

3.1 Introduction

The availability of inexpensive gigabyte-scale local storage on sewst@s{37] and
the high cost of radio operations relative to storage operations are enabfiagrrodes that
store data locally in between data collection events [35]. Storage-baseam setworks are
used to monitor volcanoes, battlefields, habitats, seismic events, traffic, anthllilgéy and
integrity of engineered structures such as buildings and bridges [AHib8lever, the difficulty
of gathering data from sensor nodes in hostile and inaccessible envirtsmhaanalso made it
harder to deploy base stations that accumulate nodes’ data. Base stationslimstalkensor
networks are easily detected in contested land areas such as bordeags am obvious target
for network disruption. Base stations in inaccessible and natural envirdsmensingle points
of failure because they may suffer from power outages or malfunctiosjradata loss; in a
volcano-based sensor network, “[flailures of the base station infcisteiwere a significant
source of network downtime” [47]. Some networks try to avoid this problgnudploying
multiple base stations or specialized storage nodes [46], increasing the bothetimdld of
the detection of the network, and the system cost. Data loss in centrally-camtseliesor
networks is likely to be more severe because nodes do not retain the atimeswhey have
already uploaded to the base station. Moreover, a base station cannot easifgitrdata to a
receiver when none is nearby, as is often the case in remote environi8entsenvironments
are better suited to occasional data collection, requiring nodes to reliably maimear data
over long periods of time.

Individual sensor nodes typically suffer from relatively high failunesaas compared
to traditional storage devices. Moreover, sensor nodes are more likelyffev sarrelated
failures due to environmental dangers. Individual failures may be cdnsbdttery depletion,
hardware or software errors, or physical damage. In contrasglated node failures may be
caused by larger-scale physical damage caused by a destructiteseeh as flood, rock fall,
or fire. Unfortunately, the latest data from destroyed nodes is often tisevaluable because
it may record details of the event, making it even more important for the olisBrsayathered
by the nodes to survive their destruction. However, it is also imperativaémsor nodes create
and maintain back-up copies of their data without overwhelming their enerdpelst

15

We discuss the tradeoffs between energy and reliability in sensor nettiakstore
data for long periods of time: weeks to years. These tradeoffs can be iméldree separate
areas: redundancy techniques, choice of nodes which store thedgedulata, and frequency of
integrity checks on the remotely stored redundant data. We do not expextaigy expenditure
of reliable storage in sensor networks to be less than the energy exbeyndedes to upload
their data to a base station; rather, our goal is to make sensor networlestaunaly more reliable
by increasing the likelihood that sensor data survive despite individuhlcarrelated node
failures. By providing energy-efficient storage operations, sengwronks can more easily
provide raw data, instead of aggregated and representative valubsjrtontended audience,
potentially facilitating more robust forecast and analysis models.

We assume that the network is comprised of sensor nodes severely itatsira
power, storage, and processing. We also assume that nodes have laditedange, so com-
munication with distant nodes requires multi-hop routing. Since our research igipyiota-
cerned with energy-reliability tradeoffs, we fold the costs for interfeeeand retransmission
into the cost for transmitting data between nodes. We assume that each soadttery-
backed RAM for buffering data and NAND flash memory for persistentagi@{35], though
new non-volatile memory technologies such as phase change memories may Sumibléfy
the architecture [29].

3.2 Issuesin Reiability

Analyzing tradeoffs between energy usage and file system reliabilityndsme mak-
ing good choices for redundancy techniques, nodes for remote starajgequency of check-
ing integrity of redundant data, while considering the high failure rate cfazemodes and the
likelihood of occurrence of correlated failures [38].

3.21 Redundancy Techniques

As with traditional file systems, sensor nodes may use either mirroring or erasur
coding to store data reliably. Transmission costs dominate the energy usageds compared
to simply storing the data locally. Transmitting data costs two hundred times more ¢88fgy
than storing data locally. As a result, due to the relative position of nodes armh#ie station,
the transmission cost of mirroring data to another node may be lower thanfthpkoading
data to a base station. This is specifically the case when the transmitting node is émtidwe ¢
of the network and the base station is installed at the edge of the networkeorerga. The
storage overhead of mirroring is also very high: toleratirigilures requires the system to store
n+ 1 copies of the data. In contrast, processing costs dominate energyfasagasure codes.

We compared the performance (energy consumption expressed in mJ arghguou
expressed in MB/s) of encoding using Reed-Solomon (RS) codes [48[an GF(3) [20]
to XOR-based codes [50, 22] on an ARM9E 400 MHz processor thauwoes 94 mJ/s [1].
The first column in Table 3.1 represents the RS code implementation for pararfretay,
wheren is the number of data nodes, andis the number of parity nodes. RS codes were
implemented as table lookups, where each multiplication requires two lookups. Edeiplo

16

Table 3.1: Energy expenditure of erasure codes in mJ/s and throughyBt' s

Code Size|| Energy Expenditure (mJ/s) Throughput (MB/s)
RS [XOR RS [XOR

(5,3) 3.515| 1.205 2.674| 7.798

(6, 2) 3.133| 0.6 3 15.654

(9, 3) 4.82 | 0.524 1.95 | 17.953

(10, 2) 3.92 | 0.653 2.4 14.4

(17, 3) 5.193| 0.588 1.81 | 15.99

(18, 2) 4.36 | 0.589 2.156| 15.972

XORy — 0.74 — 12.76

XOR, — 0.75 — 12.72

table is 256 bytes in size, consuming 512 bytes of memory. The second colurablen3'1
represents the most fault-tolerant XOR-based codes for the same pasarbtse codes have
the storage efficiency af/(n+m). The last two rows present the performance of highly fault-
tolerate XOR-based codes that we developed. X0, code we designed is an instance of a
WEAVER code [22] that tolerates two-node failures.

Reed-Solomon codes consume 3-10 times more energy than XOR-basediwedes
to more complex finite field calculations [22, 21] with our implementation, but provideshigh
reliability (e.g, a (5,3) RS code can toleratall three-node failures but an XOR-basg]3)
code may only be able to toleraterabstthree-node failures). However, it may be possible to
tolerate some node failures without losing data because very closely-loeatsat lodes may
be observing similar phenomena. In order to tolerate correlated failureg)located sensor
nodes must spread their information over a large physical area. Theyeax@enditure oXOR;
andXOR, schemes is comparable to most XOR-based codes but better than that fod€®S co
We are currently exploring the suitability of several less processor inteK©OR-based codes,
based on the research done by Wylie and Swaminathan [50], to semsorkse Future work
will also compare the amount of energy required to transmit data to neighbarites nvith the
computation cost for generating code data. The transmission cost may sighjfd@minate
the compuation cost such that the code choice is less relevant.

3.2.2 Node Choice

The impact of correlated failures caused by localized damage can be mitigated b
spreading redundant data over a large physical area. Howewver,isheecost in energy to send
the data further away. Even when the number of nodes in two redundemgysgis the same,
the choice of the layout of nodes significantly impacts both reliability and gmeguirements.

Mirroring alone is energy-consuming for making sensor network staggble. In
order to reduce energy expenditure, it may be better to mirror data only tbyneades and
to use erasure codes for nodes that are further away. This appraaaquickly replicate data
nearby, guarding against individual node failure, and can use wiglgdpeplication to protect

17

BaC|CeD|DoE | E®A | A®B

Figure 3.1:XOR; redundancy method for a 5-node sensor network.

BaeC|AeD | A®E |AaC | AeB

DeE |CeoE|BaeD |Be®E |CaD

Figure 3.2:XOR, redundancy method for a 5-node sensor network.

against correlated node failures. Systems such as OceanStore [42h888e codes to tolerate
relatively large numbers of failed nodes; we plan to do the same for makirsgrseatwork
storage reliable. Our file system has the advantage of using less-exgp¥@dR-based codes in
place of RS codes by carefully placing redundant data on particul@snddhen using &b, 3)
XOR-based code, by arranging data so that the “fatal” three-node®ets a large physical
area, the sensor network can gain nearly all benefits of RS codes witioitgutational cost
of XOR-based codes. By choosing several nodes located someavifabrh each other, the
system is more safe because they are less likely to suffer correlated faiomelsaneously.
The system could provide additional reliability by choosing some very distadgshas part of
its redundancy group.

We designed two XOR-based backup layouts which are cXI andXOR;. In the
XOR; scheme, each node stores its own data and the XOR of data from two ottess. niche
number corresponds to how many copies are stored as a parity on eachamberrigure 3.1
shows the 5 node case where nodes and their data are specified by teelditdtach column
represents all data stored at a given node, including redundant daaalag for other nodes.
Node A stores its own data aiBkp C; node B stores its own data afdp D; node C stores
its own data andD & E; node D stores its own data aAdp E; and node E stores its own data

18

Figure 3.3: Markov model, wherk andu are the average failure and repair rates, respectively,
of exponential distributions.

andA @ B. In the XOR, scheme, each node stores its own data and data from four other nodes
as two-node XORs. Figure 3.2 shows the same 5 node case where eaunh cgfwesents all
data stored at a given node, including redundant data as backup éomaithes. Node A stores
its own data and8 © C andD & E; node B stores its own data aidd E andA& C; node C
stores its own data anll® E and B @ D; node D stores its own data akdp C andB® E;
and node E stores its own data ateb B andC ¢ D. The storage overhead ™ rror 4 is
four times that of the original data set. The storage overheaOBf and XOR, schemes is,
respectively, two and three times the original data set. Figure 3.4 showXG@Ratdelivers
availability similar toM r r or 4, but at a lower overheadM r r or 4 can tolerate at most four
node failures, whileXOR; andXOR, schemes can, respectively, tolerate at most two- and three-
node failures. Markov models provide good approximate analysis, but daoré& well for
“irregular” XOR codes or for systems that experience correlated failtihese are better suited
to simulation. However, they provide an approximate initial analysis.

We use a simple Markov model to analyze the availability of Nhe r or 4, XORy,
and XOR, schemes. Figure 3.3, depicts 4-way mirroring, but can easily be gendr&dizm
n-node redundancy group. The transitions are exponentially distributedweiim failure rate
A, and mean repair rage. For simplicity, we leto = A /. Whenp = 1, this means that failures
are replaced at the same rate that failures occur. On the other hand, ggaaha not replaced
as quickly as they occup ~ 0. In a real sensor network, we expect replacements to occur
infrequently, so thap ~ 0. State(0,0) represents the failed state.

The availability of a node’s data whe r r or 4, XOR;, andXOR, schemes are used
to create redundancy in the sensor network are given by:

o
Mrrorg=1— ——,
YT (1+pp
10p2+5p+1
XORj=———, and
T (p+1E
50+1
XOR, =1— .
277 (p+1)p

19

Table 3.2: MTTDL, in hours, foM r r or 4, XOR;, andXOR, schemes with and without repair.

Mrrors | XORg XOR,
MTTDL with repair (h) | 4.87x 10 | 2.42x 10° | 6.50x 10°
MTTDL w/o repair (h) | 4932 1692 2772
1
=
5
S 05
©
>
<
Mirror-4 ——
XOR-2
XOR-1 s
0 one .
0 0.5 1

p=A/H
Figure 3.4: Data availability d¥1 r r or 4, XOR,, XOR;, and no redundancy.

These availability models are simple and assume that the nodes may be repaitieel cdse

of no repair, steady-state does not exist and so the system must be modiedediffisrential

equations. These equations quickly become unmanageable, and so a hétter would be to

use simulation, which has the additional advantage of being able to model catfeiatees.
Modeling mean-time-to-data-loss (MTTDL) is easier, and uses the same transition

matrix that would be used for modeling with differential equations. We assumedthefetilures

and repairs are exponentially distributed. We solve all these models by buildragsation

matrix M, as discussed by Schwarz [44], and computing

MTTDL=—[1,1,1,...,1]-M1.[1,0,0,...,0].

Table 3.2 presents the MTTDL favl rr or 4, XORy, and XOR, schemes, with and without
repairs. For this example we assume that nodes are organized into fiveedodeancy groups

and choos@ = 5.56 x 10~3, which assumes that failures occur on average every 3 months and
nodes are repaired, on average, in 12 hours.

3.2.3 Frequency of Integrity Checks

Regardless of the technique used to generate redundancy, eashrsmies must pe-
riodically check to ensure that its back-up data is still being stored corréfictiynode replicates

20

its data to distant nodes, then its integrity checks and their responses musaegsdurther,
thereby expending more energy. Moreover, the more frequently a ned&sthe correctness
of its back-ups, the more energy it expends. Furthermore, additional eiseegypended at
the responding node which must generate a signature and transmit it eakoltiple hops.
However, in a system where node failure is frequent, it is necessarytdotdgnall problems
before they grow bigger and cause data loss. It may be energy-wievtcssanall problems to
become a little bigger, but not fatal, because the energy cost to restareleetty is sub-linear.
We are currently exploring the energy tradeoffs between more frequegtity checks with
that of the overall reliability of the system.

We plan to use algebraic signatures [45] to verify the correctness otegrsiored
redundant data. Although algebraic signatures are not cryptogréplsieaure, they change in
response to small changes in the data from which they are generated. vieloithey can be
used in conjunction with XOR or RS codes to ensure that a set of returneatsigs is consis-
tent. An algebraic signature operation requires a node to calculate a fuantitsown piece of
stored redundant data, thereby, generating a small (4-8 byte) signatiniem combined, these
signatures obey the same relationship as the data from which they weratgendrthe signa-
tures form a valid code word in the XOR or RS scheme, the underlying daighiy tikely to
be consistent as well—the chance of agreement with an underlying eappieximately 2°
for ab-bit signature.

3.3 Optimizations

We are currently researching several optimizations that can help redecgyere-
qguirements for making sensor network storage reliable. For example, it mpgdsible to
piggy-back integrity check messages and responses on other netafficksuch as “hello” or
“ack” messages or on other traffic related to updating routing and neighddtables. Such
piggy-backing has the potential of reducing transmission cost becaegeityy check messages
are relatively small and the marginal cost of including additional information atheen mes-
sage is minimal. In order to reduce energy expenditure of reliability, somedadgy can be
generated at remote nodes to reduce the total volume of data that must be transveitiarge
distances. Sending all data to a remote node and letting it distribute it to its neagbiors
may also be more energy efficient than the originating node distributing its data todals.n
Energy expended in transmission can be further reduced by using $ahee“mouting” nodes
or the intermediate nodes in the path between a source node and its destinatioip ibacle.

3.4 Reated Work

Koushanfarget al.[28] identify computing, storage, communication, sensing, and ac-
tuating as resources and propose backing-up a resource runningtloane that is abundantly
available. However, the application software that computes resource availataltitself con-
sume lots of energy. The solutions presented by Kamtra)l. [25] and Lin, et al. [31] are
designed for sink-based network architectures. Although our solutiorpliable to both dis-

21

tributed and centrally-controlled networks, we assume a distributed netwairiteecture with-

out a sink. Lin,et al. [32] use decentralized fountain codes to introduce redundancy into the
network. Ghoseet al. [19] present a Resilient Data Centric Storage (R-DCS) scheme to re-
duce energy consumption while increasing resilience to node failures. Scpeasesited by
authors [32, 19] require a complete picture of the network. This may natyahlwe possible
with ad hocnetworks [31]. In contrast, we assume nearly homogeneous nodes withgh® s
point of failure. This assumption may not hold wellad hocnetworks deployed by dropping
nodes from an airplane or artillery shell. Dimakét,al. [15] use decentralized erasure codes
to reduce latency and unreliability between query times and the time at whichedatzes the
data collector. The authors assume a fixed ratio between the number oestodes and the
number of nodes that contain original data.

3.5 Conclusion

“Sense and store” sensor networks are gaining popularity due to thet r@ailabil-
ity of gigabyte-scale local storage on sensor nodes, and becausgestiperations are more
energy efficient than radio operations. It is important to make the data dtmaty on sensor
nodes reliable because sensor nodes suffer from unusually higtefieites (both individual and
correlated). We discussed three factors that influence energyiiglistadeoffs—redundancy
techniques, node choice, and frequency of integrity checks. Wemsgba simple analytical
model for modeling the availability of a node’s data, and are currently explorieggtissues
in more detail using simulation-based models. Our research on energy-reliabdigptigwill
enable long-term reliable storage in sensor nodes and enable theirmepkin environments
where frequent data collection is infeasible. We showed that our implementdtiBeed-
Solomon provided higher and more flexible reliability at the expense of a higlieege cost.
We also showed tha€OR;, provides reliability close to that of a 4-way mirroring scheme, but at
a much lower storage space overhead. This project [8] was a collatmoedfibrt completed at
UCSC. My significant contributions are the design of ®@R; and XOR; reliability schemes,
the Markov models, and the availability equations.

22

Chapter 4

Parallel Redundant Array of Independent
Streams (PRAIYS)

4.1 Introduction

Tape drives [11] are well suited for archival storage of data thatfiequently ac-
cessed. Random read access of data has very low performancsdéeaindividual tape drive
that contains the data must be loaded and the magnetic tape must be rotated totithe ddca
the data within the tape. On the other hand, writing data onto tape drives is tastdeetape
drives are efficient at sequential data streaming.

When archival data is eventually accessed, the probability that the tapsérdng the
data has suffered an unrecoverable data loss (either a full or pattimejas relatively high.
Reliability of enterprise tape drives in the short term is much better than digksdribut the
large amount of time between accesses leaves a long period of time for the tridegrade
due to an improper storage room environment including mishandling durirgigathynoves.

An erasure coding system can help protect data against these typaitucdsf by
storing the tape in an array with some redundant data. However, addingdancy also adds
complexity and can degrade performance. We implemented a parallel algorithoothgutes
two parities and simulates a tape archive, though the data is written to disk. detlsdt our
algorithm scales linearly for small installations.

4.2 Reated Work

The performance of writing to a tape archive is crucial, particularly whe @s
a backup for a large disk-based storage system. A typical usageaasgé is as a nightly
backup. If it takes longer than all night to copy the data to tape, this methattiwot be very
useful. Tape archives use striping to improve performance [16, 17{a Baroken up into
pieces which are written to all tapes sequentially, in a sort of striping patteossithe devices.
This technique greatly improves read and write performance, but at gteoteeliability. If
a file is striped across 128 tape drives, all 128 must accurately retrieveskizge of the file

23

Figure 4.1: RAID 1 mirrored data layout requires high 2x storage spaicgdnd read perfor-
mance. Any single failure is tolerated, as well as some multiple failures such as désis @
in this example.

in order for it to be reconstructed. We look at improving the reliability that iyei@sed when
using striping.

Storing data in a redundant format is an easy way to improve reliability. Thigdsya
common technique in disk systems as well. The simplest version is mirroring @rhéyels of
replication. Tandem in the 1980s offered reliable computer systems that pagcbamirrored
disks [9]. These types of fault tolerant systems were popular with thkifgamdustry. Cur-
rently, the Google File System (GFS) [18] needs to provide high availabilityowithoticeable
degradation when failures occur and therefore triplicates its chunks. temstorage overhead
of replication is high and since many data centers are not limited by perforpathee types of
redundancy generation are important. Mathematically, all types of redundande described
as an erasure correcting code that stonekata blocks om disks such that all data is accessible
despite up tk disk failures. For example, a systemrofriplicated disks uses = 3mdisks in
total and can always survive up ke= 2 failures, and often many more.

One well known technigue that is often implemented in hardware is ReduAdayt
of Independent Disks (RAID) [39], which is a set wfdata devices associated withparity
devices. RAID level 0 has no parity and is now known as a Just a BundiisBs (JBOD).
Figure 4.1 shows the RAID 1 layout which stores identical data on two disgsre 4.2 shows
two layouts which use parity to reduce the storage overhead of storingdedt data. Parity of
several data blocks is calculated by taking the exclusive-or of all dataR/D 4 places parity
blocks on a dedicated disk. This presents a bottleneck on the parity dsldesthe parity disk
must be accessed for every write. In order to remove the bottleneck oorthalisk, parity is
distributed across all disks in the RAID 5 layout.

Early work extended RAID 5 to tolerate multiple disk failures by using additional
parities for data stripes. One of the clear benefits to XOR-based coded thel are compu-
tationally efficient and easy to understand. Hellerstein et al. [23] préseaty (XOR-based)
linear codes in a combinatorial framework. Their codes tolerate up to threeefiluthe gen-
eral case and they suggest that codes tolerating more than three failutdswabloe useful in
the future. EVENODDIJ10] is a maximum distance separable (MDS) code witimal per-
formance, no recursive computations, and tolerates up to two disk failuresS ddDes are

24

stripe| disk | disk | disk | disk stripe | disk [disk | disk | disk

1| 2] 3] 4 11 2] 3] 4
A | Day|Pa2 | Pas| Pa A |Da1|DPa2 | Pas| Pa
B |Pgy|DPg2|DPg3| PB B |Dgy|Pg2| PB | Pg3
C |Pci|Pc2|Bes| Pe C [Pci| Pc |Pe2 | Pes
D |Pp1|Pp2|Pp3| Pp D | Pb |Ppy |Pp2 | Pp3

Figure 4.2: RAID 4 and RAID 5 data and parity layouts have a lower stooagenead than
RAID 1, but only tolerate a single failure. The parity distribution of RAID 5 elimisatiee
parity disk bottleneck.

RDP

stripe| disk | disk | disk [disk | row | diag.
1 2 3 4 | parity | parit

A Da2 | Pa3 | Pas | Pa

B | Dpq D3 | Pga | PB | Ps2

C |Pci|Pec2 Bgd Pc | Fsa

D |Ppy |Pp2|Pps Pp | Pss

Figure 4.3: The Row-Diagonal Parity layout tolerates any two failures.

optimally space efficient.

4.2.1 Row-Diagonal Parity (RDP)

Row-Diagonal Parity [14] is an XOR-based code similar to EVENODD baot/@n
computationally optimal. Figure 4.3 shows the layout of RDP with dedicated paritg.disk
This is simpler to understand, but parity can be distributed on all disks as IB BAEach
data segment belongs to one row parity segment and one diagonal pgmnitgree The diagonal
parity includes data segments and row parity segments if they are includedliagiomal. RDP
protects data against up to two disk failures. We investigated RDP [14] assure coding
method for streams of data. Systems using RAID 4 or other methods with a simijefpa
each redundancy group are protected against a single failure. Ichkimasystem with strict
data reliability requirements, it is better to protect against a second failuremé&#sure the
implications and investigate the tradeoff between additional parities and theaffediability
and performance.

Figure 4.4 illustrates an example RDP layout. The numbers on each disk represent

25

]
5 3 I 3 I

Disk 1 Disk 2 Disk 3 Disk 4 Row Parity Diagonal Parity

Figure 4.4: Example RDP layout with integers for data. For a single failurenstact using
either row or diagonal parity. After a double failure, first reconstruciagahal that only lost
one element. Then, reconstruct that row, and repeat this procesbdata and parity elements.

sample integer data and (for simplicity) the parities are computed with addition rather than
exclusive-or. To show how data is reconstructed after two failurepaagodisks one and two

fail. Notice that the yellow diagonal lost just one block. Thus the yellow blmtklisk 1 can

be reconstructed using the remaining blocks in the yellow diagonal paritye stijow row
parity can reconstruct the pink block on disk 2 in the bottom row. The rebkeafeconstruction
follows in the same manner.

4.3 PRAISImplementation

RDP was implemented in a parallel software scheme using C with MessagegPassin
Interface (MPI). Figure 4.5 shows the architecture of the softwareh Eade in the cluster
represents a storage device along with one master node that coordmatdésadling. Node 1
is the parity node and either reads parity and sends to another nodeieesquarity and writes
it out to disk Each other node computes the XORs of data as it is read from Thekfile is
broken up into RDP “sets” where each set is a self-contained box valiev parities and all
diagonal parities can be computed using that set. In Figure 4.5, the datadégmjeresents an
entire diagonal parity set with several rows and diagonal parity elemEath set is allocated
to a node and all parities are computed at that node and then segments tod¢teeappropriate
node that will write that segment of data. A larger number of nodes mearthéhsiripe width
is larger so that data can be written to disk more quickly and each node deemlés

4.4 Evaluation

Our experiments were run on a 164 node Linux cluster at Los Alamos Natiohat La
ratory. The first experiment consists of 500MB of data striped and writtdnRDP. Figure 4.6
shows the speed of several runs using 8-16 nodes. The work invigl¢kedt each node com-
putes parity and writes data to a disk device and sends data to other ndwelsaddwidth of
the initial write is about 100 MB/s with 8 nodes and 200 MB/s with 16 nodes. Aserd,

26

nnonn

AB

ooooo

onnonn
ooooa

w
>
w

A"B

N
—

Ononn Ononn 00000

d = d = d =
= E E 3 = 3
= E———— E = < E = <
= E = 3 = 3
= E E E = E
Uoooo = 4 OUoooo = 4 UoooT = 4
— S D ~L0D
— e e
Stripe 1 Stripe 2 Parity

Figure 4.5: PRAIS architecture.

doubling the number of nodes doubles the bandwidth because the workas spiteevently.

The second experiment was to reconstruct missing data after two failueze wie
total size of data is 500MB and it is striped and stored with RDP. Figure 4wsstie results
of reconstructing data. You can see that the bandwidth is lower than the initial Whis is
because reconstructing two data elements involves first reading all remdatizgthen com-
puting both parities. Bandwidth is approximately 75 MB/s with 8 nodes and 150 MiBis
16 nodes. This shows that our algorithm scales for small numbers of nodes.

45 Conclusion

We completed a parallelized software implementation of RAID 4 and row-diagonal
parity. We showed that our parallel implementation scales well for small numbersdes:
doubling the number of nodes doubles the initial write and reconstruction bathgwidhe
motivation of this project is to investigate the tradeoffs of using higher levelsdirrdancy
than RAID 4 in a tape archive. Future work is to do a more complete evaluation cogpar
the performance of our parallel RDP implementation with higher redundaasyer codes to
determine the cost of tolerating additional failures. We would also like to evaluatelifiegility
for a simulated tape archive and compare the actual improvement in reliabilitidpdowith
the computational cost. This will help determine how useful this work can befgeraechives
and other applications such as wide area network data movement and disksrd his project
was completed at the Los Alamos National Laboratory (LANL) during a summenstigy in
2004.

27

Bandwidth (MB/sec)

Bandwidth (MB/sec)

300
*
250 -
*
*
3
. * .
200 ¥
. - .
* *
‘ *
* .
150 3 3
$ i .
*
100 - *
*
50
0 T T T T T T T T
0 2 4 6 8 10 12 14 16 18

Number of processors

Figure 4.6: Performance of initial write of 500MB of data.

300
250
200 3
>
3 . *
150 5 - $
*
- M . 3
‘ .
. [y .
100 . 3
b s .
]
i >
50
0 T T T T T T T T
0 2 4 6 8 10 12 14 16 18

Number of processors

Figure 4.7: Performance of reconstruction of 500MB of data.

28

Bibliography

[1] www.arm.com/products/CPUs/ARM926EJ-S.html.
[2] Sun StorageTek T10000. http://www.sun.com/storagetek/tape_storagertag@ia/t10000/.

[3] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, PatrickyRolds, and Athicha
Muthitacharoen. Performance debugging for distributed systems of bta@s. InPro-
ceedings of the 19th ACM Symposium on Operating Systems Principles {(&)SBc-
tober 2003.

[4] Eric Anderson, Mahesh Kallahalla, Mustafa Uysal, and Ram SwaranatButtress:
A toolkit for flexible and high fidelity /0O benchmarking. IRroceedings of the Third
USENIX Conference on File and Storage Technolgdgdas Francisco, CA, March 2004.

[5] Akshat Aranya, Charles P. Wright, and Erez Zadok. Tracef§iiefsystem to trace them
all. In Proceedings of the Third USENIX Conference on File and Storage dkaias
pages 129-145, San Francisco, CA, April 2004. USENIX.

[6] Mary Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shitrdhd John K. Ouster-
hout. Measurements of a distributed file system.Ptaceedings of the thirteenth ACM
Symposium on Operating Systems Principl€91.

[7] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Motiiging Magpie for
request extraction and workload modelling. Pnoceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSRiyes 259-272, San Francisco,
CA, December 2004.

[8] Neerja Bhatnagar, Kevin M. Greenan, Rosie Wacha, Ethan L. Maled, Darrell D. E.
Long. Energy-reliability tradeoffs in sensor network storage Piloceedings of the 5th
Workshop on Embedded Networked Sensi68.

[9] Dina Bitton and Jim Gray. Disk shadowing. Rroceedings of the 14th Conference on
Very Large Databases (VLDBpages 331-338, 1988.

[10] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon. EVBEROAN optimal
scheme for tolerating double disk failures in RAID architecturesProceedings of the
21st annual international symposium on Computer architecpages 245-254, 1994.

29

[11] R. Bradshaw and C. Schroeder. Fifty years of IBM innovation witbrimation storage
on magnetic tapdBM Journal of Research and Developmefit(4):373-383, July 2003.

[12] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Dave Patterson, Amhoafox, and Eric
Brewer. Path-based failure and evolution managememetworked Systems Design and
Implementation (NSDJpages 309-322. USENIX, 2004.

[13] Chee-Yee Chong and Srikanta P. Kumar. Sensor Networks: Evol@jgportunities, and
Challenges. IiProc. of the IEEEvolume 91, pages 1247— 1256, 2003.

[14] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kkeidemes Leong,
and Sunitha Sankar. Row-diagonal parity for double disk failure correctioRroceed-
ings of the Third USENIX Conference on File and Storage Technoldpesl.

[15] Alexandros G. Dimakis, Vinod Prabhakaran, and Kannan Ranathan Ubiquitous ac-
cess to distributed data in large-scale sensor networks through déicedtemasure codes.
In IPSN ’05: Proceedings of the 4th international symposium on Informationgssing
in sensor networkgage 15. IEEE Press, 2005.

[16] Ann L. Drapeau and Randy H. Katz. Striped tape array®receedings of the 12th IEEE
Symposium on Mass Storage Systet@93.

[17] Ann L. Drapeau and Randy H. Katz. Striping in large tape librarie®réteedings of the
1993 ACM/IEEE conference on Supercomputpages 378-387, 1993.

[18] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. Theglgdde system. In
Proceedings of the 19th ACM Symposium on Operating Systems PrinciQI€® (83)
2003.

[19] Abhishek Ghose, Jens Grossklags, and John Chuang. Resiéigaitentric storage in
wireless ad-hoc sensor networks. Rroceedings of the 4th International Conference on
Mobile Data Managemenpages 45—62. Springer-Verlag, 2003.

[20] Kevin Greenan, Ethan L. Miller, and Thomas Schwarz. Analysis @mstruction of
Galois fields for efficient storage reliability. Technical Report TecHrireport UCSC-
SSRC-07-09, University of California, Santa Cruz, 2007.

[21] Kevin M. Greenan, Ethan L. Miller, and Thomas J. E. Schwarz, ©gtimizing galois
field arithmetic for diverse processor architectures and applicatiof¥obeedings of the
16th IEEE International Symposium on Modeling, Analysis, and Simulation mpGter
and Telecommunication Systems (MASCOTS 2@#)tember 2008.

[22] James Lee Hafner. WEAVER codes: Highly fault tolerant erasades for storage sys-
tems. InProceedings of the Second USENIX Conference on File and Stordgaclegies
(FAST) 2005.

30

[23] Lisa Hellerstein, Garth A. Gibson, Richard M. Karp, Randy H. Katej David A. Patter-
son. Coding techniques for handling failures in large disk arr&ygorithmicg 12:182—
208, 1994.

[24] Bo Hong. Techniques for synthetic I1/O workload generation. M.sesifh University of
California at Santa Cruz, September 2002.

[25] Abhinav Kamra, Jon Feldman, Vishal Misra, and Dan Rubensteiria persistence for
zero-configuration sensor networks. ACM Special Interest Group on Data Communi-
cations (SIGCOMM)2006.

[26] Magnus Karlsson and Christos Karamanolis. Non-intrusive padace management for
computer services. INMiddleware 2006pages 22—-41, Melbourne, Australia, November
2006.

[27] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. Tri&geformance differ-
entiation for storage systems using adaptive con&GIM Transactions on Storage (TQS)
1(4):457-480, 2005.

[28] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-VincentelliulFtlerance techniques
in wireless ad-hoc sensor networks. Rroc. of IEEE Sensors/olume 2, pages 1491—
1496, 2002.

[29] S. Lai. Current status of the phase change memory and its fuitP&1 Technical Digest
pages 10.1.1-10.1.4, 2003.

[30] Andrew Leung, Shankar Pasupathy, Garth Goodson, and Ethsliller. Measurement
and analysis of large-scale network file system workloadsPrbteedings of the 2008
USENIX Technical Conferenc2008.

[31] Song Lin, Benjamin Arai, and Dimitrios Gunopulos. Reliable hierarchdeah storage in
sensor networks. [h9th Int'l Conf. on Scientific and Statistical Database Mgmt, SSPBM
pages 26-35, 2007.

[32] Y. Lin, B. Liang, and B. Li. Data persistence in large-scale senstworks with decen-
tralized fountain codes. INFOCOM 2007. 26th IEEE Int'l Conf. on Computer Commu-
nications pages 1658-1666, 2007.

[33] Christopher R. Lumb, Arif Merchant, and Guillermo A. Alvarez. Fagadirtual storage
devices with performance guaranteesPhoceedings of the Second USENIX Conference
on File and Storage Technologies (FAS$an Francisco, CA, April 2003.

[34] Tara M. Madhyastha and Daniel A. Reed. Input/output accesgpattessification using
hidden Markov models. Ifrifth Workshop on 1/O in Parallel and Distributed Systems
(IOPADS) pages 5767, November 1997.

31

[35] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, artthiRt&henoy. Ultra-low power
data storage for sensor networks. IRSN '06: Proceedings of the fifth international
conference on Information processing in sensor netwqriges 374-381. ACM, 2006.

[36] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasivan, Julio L.dpezes Hendricks,
Gregory R. Ganger, and David O’Hallaron. //TRACE: Parallel tracéasewith approx-
imate causal events. Rroceedings of the 5th USENIX Conference on File and Storage
Technologies (FASTpages 153-167, February 2007.

[37] A. Mitra, A. Banerjee, W. Najjar, D. Zeinalipour-Yazti, V. Kalogeratnd D. Gunopulos.
High-Performance Low Power Sensor Platforms Featuring Gigabyte Stalage. In
IEEE/ACM 3rd Int'l Workshop on Measurement, Modelling, and PerfalAof WSNs
2005.

[38] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srinivasan Ses8ahtleties in toler-
ating correlated failures in wide-area storage systemalemorked Systems Design and
Implementation (NSDJR006.

[39] David A. Patterson, Garth Gibson, and Randy H. Katz. A caseddumdant arrays of
inexpensive disks (RAID). IRroceedings of the 1988 ACM SIGMOD International Con-
ference on Management of Dafages 109-116, 1988.

[40] James S. Plank. A tutorial on Reed-Solomon coding for fault-toleram¢®AID-like
systems.Software, Practice and Experien7(9):995-1012, 1997.

[41] Lawrence R. Rabiner. A tutorial on hidden markov models and selegigctations in
speech recognitiorProceedings of the IEEEF7(2):257-286, 1989.

[42] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim WeatherspoorZi&®, and John Ku-
biatowicz. Pond: the OceanStore prototypePmceedings of the Second USENIX Con-
ference on File and Storage Technologies (FAPapes 1-14, 2003.

[43] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A compaii$ file system
workloads. InProceedings of the 2000 USENIX Technical Confere060.

[44] Thomas SchwarzReliability and Performance of RAID Systeni3hD thesis, Univ. of
California at San Diego, 1994.

[45] Thomas S. J. Schwarz and Ethan L. Miller. Store, forget, andkchesing algebraic
signatures to check remotely administered storagelCIDCS '06: Proceedings of the
26th IEEE International Conference on Distributed Computing Systeage 12. IEEE
Computer Society, 2006.

[46] Bo Sheng, Qun Li, and Weizhen Mao. Data storage placement iniseeisvorks. IPACM
International Symposium on Mobile Ad Hoc Networking and Compugiages 344—355,
2006.

32

[47] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathaes, and Matt Welsh. Fi-
delity and yield in a volcano monitoring sensor network. O%DI '06: Proceedings
of the 7th symposium on Operating systems design and implemenfziges 381-396.
USENIX Association, 2006.

[48] Parkson Wong and Rob F. Van der Wijngaart. NAS parallel benctsnid€k version
2.4. Technical Report NAS-03-002, NASA Advanced SupercomputingS)N\Division
of NASA Ames Research Center, January 2003.

[49] Charles P. Wright, Nikolai Joukov, Devaki Kulkarni, Yevgeniy kliskiy, and Erez Zadok.
Auto-pilot: A platform for system software benchmarking. Rroceedings of the 2005
USENIX Technical Conferencgages 175-188, Anaheim, CA, April 2005.

[50] Jay J. Wylie and Ram Swaminathan. Determining fault tolerance of X@s&d erasure
codes efficiently. InProceedings of the 2007 International Conference on Dependable
Systems and Networks (DSN 2Q@Q07.

33

